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Abstract—In state-of-the-art Delay Tolerant Network (DTN)
routing algorithms, two encountering nodes rely on routing utili-
ties (e.g., probabilities of meeting other nodes) to decide the better
carrier (defined forwarder) for their packets. As the utilities and
forwarder information reflect user privacy, nodes may be reluc-
tant to disclose such information, which however is indispensable
in routing. To handle this challenge, we propose two distributed
strategies to protect the aforementioned private information in
utility-based DTN routing algorithms while still guarantying the
correctness of packet forwarding, namely meeting Relationship
Anonymity (ReHider) and Forwarder Anonymity (FwHider).
ReHider anonymizes routing utilities between two encountered
nodes, while FwHider additionally hides the forwarder informa-
tion among the group of encountered nodes on top of the routing
utility anonymity. We also present enhanced versions of the two
strategies that can better prevent certain malicious behaviors
such as probing attack and brute-force attack. The proposed
strategies are distributed without the need of a central authority
for authentication or key management. They can be applied to
any utility-based DTN routing algorithms. Extensive analysis,
trace-driven simulation, and smartphone based test demonstrate
the effectiveness and energy efficiency of the proposed strategies.

I. INTRODUCTION

In delay tolerant networks (DTNs) [1], due to intermittent
node connections, packets are forwarded in a store-carry-
forward manner. When two nodes meet (the case with more
than two nodes can be derived from pairwise packet exchange
naturally), they first compare how likely they can deliver pack-
ets carried by them to their destinations (as shown Figure 1(a)).
Then, they exchange packets accordingly so that each packet
is carried by the node that is more likely to deliver it to the
destination, which is defined as the forwarder of the packet in
this paper. This process repeats until packets are successfully
delivered. In most DTN routing algorithms [2]–[9], such a
likelihood is represented by a routing utility, i.e., a node’s
routing utility for another node represents its probability of
delivering packets to the node. For this purpose, the routing
utility usually is deduced from node encountering records
and/or social properties, e.g., meeting frequency [2]–[4], social
closeness [5]–[9], and network centrality [5], [6]. Figure 1(a)
shows an example of DTN routing in which the routing utility
is represented by meeting frequency.

Such a design rationale means that the routing utility
and forwarder information (i.e., which node is the forwarder
for which destination) reflect much private information. The

I have packets for
Alice and Bob. How 
often do you meet 
them?

On average, 
I meet  Alice twice
and Bob once
each day.  How often
do you meet…..

(a) General DTN routing process.

I have packets for
Alice and Bob. How 
often do you meet 
them?

Is it safe to 
disclose how often 
I meet people?

(b) Privacy disclosure concern.

Fig. 1: General packet routing process and privacy disclosure concern.

former directly shows a node’s properties, while the latter can
be used to find a node that has a high routing utility for a
specific node. Those sensitive information can be exploited
by adversaries for harmful attacks. For example, in packet
routing [2]–[4], if a malicious node learns the routing utilities
of an attack target, it can fabricate utilities larger than those
of the attack target to attract and drop its packets. By using
the centrality information in the routing utilities in [5], [6],
malicious nodes can disseminate viruses more efficiently by
first infecting high-centrality nodes.

The development of DTNs consisted of human-operated
mobile devices, such as pocket switch networks (PSNs) [5],
vehicular delay tolerant networks [10], and rural commu-
nication DTNs [11], makes the privacy concern even more
significant. In these DTNs, the routing utilities and forwarder
information actually reflect people’s privacy, such as whom
a person often meets and where a person visits frequently,
thus leading to much privacy concern from device holders,
as shown in Figure 1(b). Therefore, it is essential to protect
the routing utility and forwarder information in DTN routing.
However, while existing endeavors in this domain are mostly
focused on the routing efficiency, few efforts have been
devoted to protecting those privacies.

However, concealing such information in DTN routing is
non-trivial as it is indispensable for efficient routing. Recall
that in the routing process, two encountered nodes compare
their utilities to determine forwarders (i.e., best carrier) for
their packets and forward packets accordingly (detail in Sec-
tion III-A). This means that 1) the truthful utility information
must be revealed and shared between the two encountered
nodes and 2) each node needs to know which node it should
forward its packets to. This paradox poses a formidable



challenge: how to anonymize the routing utilities and for-
warder information in DTN routing while guaranteeing the
correctness of packet forwarding?

Therefore, in this paper, we propose two distributed strate-
gies to solve the challenge, namely meeting Relationship
Anonymity (ReHider) and Forwarder Anonymity (FwHider).
The two strategies exploit commutative encryption algo-
rithm [12], order-preserving hash function [13], and a set
of novel routing utility exchange and packet forwarding se-
quences to fulfill the design goal.

ReHider anonymizes routing utilities during the packet
routing between two encountered nodes (it can be easily
expanded to the case with multiple encountered nodes). The
basic idea is to let nodes encrypt utilities before comparing
them. However, this leads to two challenges: 1) how to identify
encrypted utilities refereeing to the same node for comparison,
and 2) how to compare routing utilizes without disclosing their
actual values to nodes other than the owner. ReHider uses
the commutative encryption algorithm and order-preserving
hash function to solve the two problems, respectively. On the
basis of ReHider, FwHider further anonymizes the forwarder
information during the packet routing process when more than
two nodes meet for packet routing. The general idea is to
select two nodes to conduct utility comparison (on head node)
and packet forwarding (on relay node) separately. Anonymous
relaying is adopted in this process to make the two nodes not
be able to learn the forwarder information, while packets can
be forwarded to their forwarders correctly.

We further design two advanced versions of ReHider and
FwHider to better protect nodes from probing attack and
brute-force attack. All proposed strategies only need a locally
generated encryption key and a hash function on each node
and do not assume a central authority for authentication or key
management, which is suitable for distributed DTNs.

In summary, the contributions of this paper include:

• We identify the privacy issue in the utility-based DTN
routing algorithms. To the best of our knowledge, this is
the first investigation on the protection of routing utilities
and forwarder information in DTN routing.

• We propose two novel and distributed strategies and
their enhanced versions to conceal aforementioned private
information in DTN routing without deteriorating the
packet routing performance.

• Extensive analysis and experiments demonstrate the ef-
fectiveness of proposed strategies.

This paper focuses on utility-based DTN routing algo-
rithms [2]–[9]. The protection of such private information in
other types of DTN routing algorithms, e.g., those that require
the exchange of context information [14], can be realized in
a similar manner and is left to future work.

The remainder of this paper is arranged as follows. Sec-
tion II introduces related work. Section III presents prelimi-
nary background and problem formation. Sections IV and V
introduce the two proposed strategies and their advanced ver-
sions. Section VI presents the performance evaluation through

trace-driven experiments and real deployment on smartphones.
Section VII concludes this paper with remarks on future work.

II. RELATED WORK

A. Utility-based DTN Routing

Many utility-based DTN routing algorithms have been
proposed with different utility deduction methods [2]–[9].
The works in [2]–[4] deduce the utility from node meeting
frequency. PROPHET [2] and MaxProp [3] calculate the
utility as the future encountering probability, which is updated
upon encountering and ages over time. RAPID [4] also uses
previous encountering records to deduce a series of utilities for
various routing performance objectives (e.g., minimal average
and maximal delay).

Considering that the carriers of mobile nodes in a DTN
often can form a social network, several works deduce the
routing utility based on social relationships [5]–[9]. The Bub-
ble Rap [5] algorithm considers a community as a group of
nodes with frequent contacts, and decides the global ranking
for inter-community forwarding and local ranking for intra-
community forwarding. SimBet [6] utilizes the network cen-
trality and mobility similarity to deduce the routing utility.
In HomeSpread [7], nodes’ community visiting preferences
are considered to assist content dissemination. In [8] and [9],
transient contact patterns and transient community structures
are further considered for more accurate packet forwarder
selection, respectively.

B. Privacy Protection in DTNs

Many researches have been conducted on protecting various
privacies in DTNs or VDTNs [15]–[19]. PreFilter [15] adopts
bilinear pairing to ensure that intermediate nodes can only
check whether a packet’s keywords match the interests of its
destination or not, without knowing the actual interests. The
work in [16] hides each interest using the solution for the “The
Millionaire’s Problem” [20], which is designed to compare two
items without disclosing their actual values.

EnPass [18] realizes anonymous routing. It specifies the
group sequence that a packet should be forwarded through
and encrypts the packet with the public key of each group
in the same sequence. Then, the packet can be decrypted by
each group to discover the next group without knowing its
source and destination. ALERT [19] dynamically partitions
the network field into zones and randomly chooses a node
in each zone to form a non-traceable anonymous route. The
anonymous routing helps protect node privacy but generally
relies on the concept of “source routing”, which may not be
efficient in the context of DTNs.

STAP [17] caches packets for a node on places it frequently
visits. Then, others do not need to know the node’s exact
location to send packets to it. In the work of [21], aggregate
statistics about sensing results are obtained without exposing
individual’s sensed data by using additive homomorphic en-
cryption and a novel key management scheme. STAMP [22]
lets each node anonymously provide the location proof for
co-location nodes to protect node privacy.



Though these methods are effective in protecting different
types of privacy in DTNs, no previous work has been proposed
to protect node privacy in routing utilities and selected packet
forwarders. Our work is the first to protect such indispensable
information in DTN routing while still guarantee the correct
operation of the routing algorithms.

There are potential other ways of protecting such informa-
tion. For example, we can only allow nodes to exchange such
information among trusted nodes [23]. However, we focus on
anonymizing those information at all in this paper because this
would provide more complete protection.

III. PRELIMINARIES

A. Network Model and Utility-based Packet Routing

We assume a DTN with N mobile nodes denoted by
ni (i ∈ [1, N ]). In this paper, we focus on utility-based routing
algorithms, which represent the state-of-the-art DTN routing
algorithms. In these algorithms, two encountering nodes first
exchange packets that take the other node as destination. Then,
they exchange the routing utilities for the destinations of all
packets on both nodes. Finally, packets are forwarded to the
node that has higher routing utilities for their destinations. We
use Uij to denote node ni’s routing utility for nj :

Uij = {ni, nj , vij}, (1)

where ni, nj , and vij denote the source, target, and value
of Uij , respectively. We use utility and routing utility inter-
changeably in this paper. For simplicity, when we say a node’s
routing utility for a packet, we are referring to the node’s
routing utility for the packet’s destination.

B. Problem Formation

We first formalize the problem solved in this paper, which
includes design goal and adversary model.

1) Design Goal: In this paper, we protect two types of
privacy information in utility-based DTN routing algorithms
while ensuring correct packet forwarding. By protection, we
mean that each node only know the information of itself and
cannot know that of other nodes.
• Routing Utility: During the packet routing, each node

cannot know the routing utilities of other nodes.
• Forwarder Information: During the packet routing, each

node only knows the forwarder information of itself
but cannot know that of others (i.e., only knows it is
the forwarder for which packets and cannot know such
information of other nodes).

2) Adversary Model: Unlike previous works that in-
vestigate the security, incentive, or bundle authentication in
DTNs [24], [25], we focus on the protection of routing utilities
and forwarder information in utility-based DTN routing. We
assume an adversary model in which malicious nodes try to
learn the aforementioned information of others through the
following attacks.
• Eavesdropping: In this attack, a malicious node eaves-

drops the communication between other nodes.

• Probing attack: In this attack, a malicious node probes
another node’s routing utility by repetitively conducting
packet routing with the node. After each routing session,
the malicious node adjusts its routing utility values based
on the comparison result, thus gradually deducing the
node’s routing utilities.

• Brute-force attack: In this attack, a malicious node collect
pairs of clear text and cipher text generated by the encryp-
tion algorithm of another node and use such information
to break the encryption algorithm.

Those attacks are mainly thwarted in the advanced versions
of the proposed strategies. We do not consider the collusion
attack in this paper and leave it to future work.

C. Cryptographic Techniques

We first introduce two cryptographic techniques that are
used in our proposed strategies: commutative encryption algo-
rithm [12] and order-preserving hash function [13].

1) Commutative Encryption: A commutative encryption
algorithm E(·) satisfies the properties below for any keys k1
and k2, message M , rational number s and ε < 1/2s

• Ek1
(Ek2

(M)) = Ek2
(Ek1

(M))
• ∀ M1 6=M2, Pr(Ek1(Ek2(M1)) = Ek2(Ek1(M2))) < ε,

where Ek1
(M) means encrypting message M with key k1.

Many commutative encryption algorithms exist with dif-
ferent security and complexity levels, such as RSA [26] and
one-time pad [27]. The work in [12] proposes to use Pohlig-
Hellman encryption to realize a commutative encryption algo-
rithm with acceptable security and complexity.

2) Order-preserving Hashing: An order-preserving hash
function H(·) satisfies properties below for v1 and v2 [13]
• If H(v1) = H(v2), v1 = v2
• If v1 > v2, H(v1) > H(v2).
The order-preserving hashing can compare two items with-

out disclosing their actual values.

D. System Setup

When a system starts, a commutative encryption algorithm
E(·) is selected for all nodes based on the system requirement
on security and complexity level. When a node, say ni, joins in
the system, it selects an order-preserving hash function Hi(·).
Except for these steps, no other configurations are needed to
support the strategies proposed in this paper.

A node’s encryption algorithm, encryption key, and hashing
function can change upon each packet routing, thus enhancing
the security level of the system.

IV. MEETING RELATIONSHIP ANONYMITY

Since DTN routing algorithms are all developed based on
pairwise node encountering, we focus on the routing utility
protection when two nodes meet for packet routing in this
section. Actually, the solution for pairwise encountering can
be easily expanded to the scenario when multiple nodes meet
for packet routing, as discussed in Section IV-D.

In the following, we explain our strategies using the case
when n1 and n2 meet for packet routing. Following the packet



routing process introduced in Section III-A, the two nodes first
deliver packets destined to n1 or n2. They then compare their
routing utilities for the destinations of all remaining packets
on them, which we assume are {na, nb, nc} (a, b, c ∈ [3, N ],
packets for n1 and n2 have already been delivered in the
first step), to determine their forwarders. We let x denote an
element in set {a, b, c}, i.e., x ∈ {a, b, c}. Such a setting is
an example and our strategies can be applied to cases with
different numbers of destinations.

A. Baseline Meeting Relationship Anonymity (B-ReHider)

B-ReHider realizes anonymous routing utility comparison
between two encountered nodes. The rationale in B-ReHider
comes from our observation on the structure of the routing
utility (shown in Formula 1): a routing utility is disclosed only
when both its target and value are disclosed. This means that
if only the target or the value is disclosed, others still cannot
get any meaningful information. For example, if n1 tells n2
that my routing utility for E(na) is v1a, in which the target
(i.e., na) is encrypted by an encryption function E(). In this
case, n1’s routing utility for na is still safe.

We exploit this property together with the commutative
encryption and the order-preserving hashing function to ensure
both anonymous and correct routing utility comparison.

1) Design of B-ReHider:
(a) Initial Setup: When two nodes, say n1 and n2, meet

for packet routing, each node first creates an encryption key,
say k1 and k2. The two nodes select a node from them as the
comparison node following a certain rule (i.e., randomly or
the one with a larger ID). We suppose n1 is selected as the
comparison node. They then compare their routing utilities for
{na, nb, nc} to determine the packet forwarder.

(b) Utility Encryption: Routing utilities need to be en-
crypted to ensure the anonymity during the comparison. Each
node first encrypts the targets of its utilities with its key.
Beside, n2 also hashes the values of its utilities in order to
hide this information from n1. After this, each node sends all
encrypted utilities to the other node.

n1 → n2 : U ′1x : {n1, Ek1
(nx), v1x}

n2 → n1 : U ′2x : {n2, Ek2
(nx),H2(v2x)}

After this step, each node only knows the other node’s routing
utilities with an encrypted target, i.e., Ek1

(nx) and Ek2
(nx).

Then, even if the values, i.e. v1x, are disclosed, the routing
utility anonymity is still kept. However, there maybe a problem
when two nodes only need to compare a few routing utilities.
This case is discussed later in Section IV-C.
n1 and n2 further encrypt the target of all received

utilities with their keys. n2 also hashes the values of re-
ceived utilities with its hash function. As a result, n1 has
U ′′2x : {n2, Ek1

(Ek2
(nx)),H2(v2x)}, and n2 has U ′′1x :

{n1, Ek2
(Ek1

(nx)),H2(v1x)}. Finally, n2 sends the encrypted
n1’s utilities to the comparison node n1 for comparison.

n2 → n1 : U ′′1x : {n1, Ek2
(Ek1

(nx)),H2(v1x)}
n1 has : U ′′2x : {n2, Ek1

(Ek2
(nx)),H2(v2x)} and U ′′1x

(c) Utility Comparison: n1 compares U ′′2x and U ′′1x to de-
cide the packet forwarder for each destination. The challenge
here is to identity the utilities with the same target (i.e., for the
same destination) after the encryption. This problem is solved
by the property of the commutative encryption. That is, if
Ek1(Ek2(nx)) = Ek2(Ek1(ny)), we can conclude that nx = ny .
This means that routing utilities for the same target in U ′′2x
and U ′′1x have the same encrypted target and can be easily
identified. Further, since all utility values in U ′′2x and U ′′1x
are hashed by the same order-preserving hashing function, i.e.,
H2(), the comparison correctness is ensured.

(d) Decrypting the Comparison Result: The comparison
in the previous step determines which node (n1 or n2) is the
forwarder for each encrypted destination, e.g., Ek1

(Ek2
(nx)).

Then, we need to decrypt them so that each node can know it
is the forwarder for which destinations. Suppose that after the
comparison, n1 has higher utility for destination Ek1(Ek2(na)).
n1 first decrypts it with k1 and obtains Ek2(na). It further
sends Ek2

(na) to n2 and tells n2 that it is the forwarder for
this destination. n2 decrypts the received destination with k2
and learns that n1 is the forwarder for destination na. n2 then
knows that it is the forwarder for remaining destinations, i.e.,
nb and nc. n2 also sends this information to n1 to let it know
that it is the forwarder for na.

The decrypted comparison result cannot help two nodes
deduce the utility values in the encrypted routing utilities. For
n1, even though it can find n2’s encrypted utility for na since
it is the only one that comes from n2 and is smaller than the
corresponding one from n1. However, since the routing utility
values received by n1 is hashed by H2() (in step (b)), n1
cannot know the actual utility value. For n2, since it does not
do the comparison, it cannot identify n1’s routing utility for
na from received routing utilities.

(e) Packet Forwarding: Finally, each node forwards pack-
ets taking the other node as the forwarder to the other node.

2) Privacy Protection Analysis: In this section, we analyze
B-ReHider’s capability to anonymize routing utilities and
resist attacks mentioned in Section III-B2.

Anonymize Routing Utilities: We first summarize the
information that a node can collect in B-ReHider in Table I
to analyze whether routing utilities are anonymized.

TABLE I: Information collected by in each node in B-ReHider.

Node Information

n1

U ′
1x : {Ek1

(nx), v1x, n1}
U ′′

1x : {Ek2
(Ek1

(nx)),H2(v1x), n1}
U ′

2x : {Ek2
(nx),H2(v2x), n2}

U ′′
2x : {Ek1

(Ek2
(nx)),H2(v2x), n2}

n2

U ′
2x : {Ek2

(nx),H2(v2x), n2}
U ′

1x : {Ek1
(nx), v1x, n1}

U ′′
1x : {Ek2

(Ek1
(nx)),H2(v1x), n1}

We see from the table that each node can only get the
utilities with encrypted targets and/or hashed values. This
means each node’s routing utilities are anonymized against
the other node during the packet routing in B-ReHider.

Eavesdropping: By examining the utilities transmitted in
B-ReHider, we find that they cannot be understood by any



eavesdropper because for each transmitted utility, its target
is encrypted, i.e., Ek1(nx) or Ek1(Ek2(nx)), and its utility
values are hashed. Therefore, eavesdroppers cannot obtain any
meaningful information without knowing k1, k2, and the hash
functions (H1() and H2()). This means that B-ReHider can
effectively thwart the eavesdropping attack.

Probing Attack and Brute-Force Attack: B-ReHider can-
not resist the probing attack and the brute-force attack. First,
since the utility comparison result is shared between the two
nodes in B-ReHider, a malicious node can easily probe another
node’s routing utilities by repetitively conducting packet rout-
ing (i.e., comparing routing utilities) with it. After each packet
routing, the malicious node can adjust its routing utility values
based on the comparison result. Then, after several rounds, the
node’s routing utility values can be gradually deduced.

Second, by examining Table I, we find that n1 can easily
access multiple clear-text and cipher-text pairs of Ek2() and
H2(). In detail, n1 can sort U ′1x : {n1, Ek1

(nx), v1x} by v1x
and U ′′1x : {n1, Ek2

(Ek1
(nx)),H2(v1x)} by H2(v1x). Since

H2() is order-reserving, H2(v1x) has the same order as v1x.
As a result, Ek1(nx) and Ek2(Ek1(nx)) appear on the same
position in each sorted set. This means that n1 can get multiple
clear-text and cipher-text pairs: < Ek1

(nx), Ek2
(Ek1

(nx)) >
and < v1x,H2(v1x) > to break Ek2

(·) and H2(·).
We thereby propose an enhanced version, named E-ReHider,

to better prevent the two attacks in Section IV-B.
3) Summary: In B-ReHider, two encountered nodes com-

pare their routing utilities anonymously. B-ReHider can also
thwart the eavesdropping attack. However, B-ReHider cannot
resist the probing attack and the brute-force attack, which are
solved in the advanced version (E-ReHider) in Section IV-B.

B. Enhanced Relationship Anonymity (E-ReHider)

We further design E-ReHider on the basis of B-ReHider to
better prevent the probing attack and the brute-force attack.

1) Preventing the Probing Attack: The probing attack
works only when two requirements are satisfied: 1) know the
utility comparison result and 2) can repetitively identify the
victim node for probing. While the first one is necessary to
ensure the packet routing, we limit the second requirement
to prevent such an attack. Specifically, we let nodes 1) use a
pseudonym to communication with the encountered node for
packet routing and 2) change the pseudonym after conducting
the packet routing. As a result, a node presents a different
pseudonym each time when it meets a node. We call such
a feature neighborhood anonymity. The work in [28] has
proposed a scheme to realize this feature in DTNs without
affecting normal packet routing. It can be directly adopted
in E-ReHider. Actually, any techniques that can realize the
feature can be integrated into E-ReHider for this purpose.

2) Preventing the Brute-force Attack: As introduced in
Section IV-A2, B-ReHider suffers from the brute-force attack
mainly because v1x and H2(v1x) on n2 have the same order.
We then solve the problem by breaking such a property. The
general idea is to create zombie destinations, which do not
exist in packets on both nodes, and let n2 modify utilities

for those destinations received from n1, thereby changing the
order. We name the utilities for zombie and real destinations
as zombie utilities and real utilities, respectively.

In the following, we introduce key changes in each step of
B-ReHider that help better prevent the brute-force attack.

(a) Initial Setup: After the initial setup in B-ReHider
(introduced in Section IV-A1 step (a)), n1 randomly creates
a set of zombie destinations (that are not duplicate with real
destinations). We assume the zombie destinations are {nd, ne,
nf}, where d, e, f ∈ [3, N ] \ {a, b, c}. n1 also informs n2 the
selected zombie destinations. We use z to represent a member
in {d, e, f}, i.e., z ∈ {d, e, f}.

(b) Utility Encryption: As in the utility encryption step
in B-ReHider (introduced Section IV-A1 step (b)), two nodes
encrypt the targets of their real utilities and zombie utilities and
send them to the other node. However, the two types of utilities
are sent separately. However, different from the B-ReHider,
after receiving the zombies utilities from n1, n2 arbitrarily
modifies their values from v1z to ṽ1z , as shown below.

n2 : U ′1z : {n1, Ek1
(nz), v1z} =⇒ Ũ ′1z : {n1, Ek1

(nz), ṽ1z}

After this step, n1 and n2 mix the zombie utilities and real
utilities. Then, both nodes follow the procedure as in the
utility encryption step in B-ReHider (Section IV-A1 step (b))
to further encrypt the received utilities. Finally, we have

n2 → n1 : {U ′′1x ∪ Ũ ′′1z}
n1 has : {U ′′2x ∪ U ′′2z} and {U ′′1x ∪ Ũ ′′1z}

where ∪ denotes mixing the two groups.
Above changes can effectively prevent the brute-force at-

tack. Specifically, in step (c), n2 modifies the values of n1’s
zombie utilities and mixes them with the real utilities before
sending them to n1. Then, {v1x, v1z} and {H2(v1x),H2(ṽ1z)}
do not have the same order since H2(ṽ1z) is different from
H2(v1z). Consequently, n1 cannot correlate Ek1(nx) with
Ek2(Ek1(nx)) or v1z with H2(v1z), i.e., cannot easily collect
pairs of clear-text and cipher-text for the brute-force attack.

Moreover, adding zombie utilities does not affect the cor-
rectness of packet forwarding for two reasons: 1) the compar-
ison between real utilities is not changed since their values
are not modified. 2) there are actually no packets destined to
zombie destinations on both nodes.

3) Summary: With the above design, E-FwHider can effec-
tively thwart all attacks mentioned in Section III-B2.

C. Preventing a Special Case

When there are only a few utilities to compare, nodes can
easily deduce the targets in encrypted utilities. For example,
suppose two nodes only need to compare the utility for one
node, say na. Then, upon receiving the utility from the other
node, each node directly knows that its target is na. To solve
this problem, we require that each node must report at least
M > 5 destinations in step (a). If a node has less than M
destinations, it arbitrarily selects some zombie destinations.
These destinations are processed in the same way as normal



destinations. Then, a node cannot guess utilities directly. Since
there actually no packets for these zombie destinations, the
packet routing process is not affected and remains correct.

This strategy is applied to all strategies proposed in the
paper to prevent privacy leakage in such an extreme case. We
do not mention it explicitly in other parts to save space.

D. Expanding to Multiple Nodes

Both B-ReHider and E-ReHider can be easily expanded
for the case when multiple nodes meet for packet routing.
One simple way is to view the group of encountered nodes
as multiple pairwise encountering and conduct packet routing
for each pair of nodes (with B-ReHider/E-ReHider applied)
sequentially. However, this method has a high cost since it
incurs Ng ∗ (Ng − 1)/2 pairwise encountering, where Ng is
the size of the group. A better way is to select two nodes as the
proxy for utility comparison, in which B-ReHider/E-ReHider
can be used to anonymize routing utilizes. Such a method is
adopted in FwHider and is introduced later in section V.

V. FORWARDER ANONYMITY

ReHider can effectively protect routing utilities. However,
it does not anonymize the forwarder information between the
two encountered nodes. The forwarder for a destination is
the node that has the highest utility value for the destination
among all encountering nodes. Such information can be ex-
ploited to find a node that has a high routing utility for a
specific destination by tracking packets destined to the desti-
nation. We then propose a forwarder anonymity method, called
FwHider, to further protect the packet forwarder information.
FwHider only applies to the scenario when a group of nodes
(i.e., > 2) meet for packet routing. This is because when there
are only two nodes, each node anyway knows the forwarder
of each packet, i.e., either itself or the other node.

Without loss of generality, we discuss the scenario when
a group of nodes n1, n2, n3, and n4 meet for packet
routing. Following the packet routing process introduced in
Section III-A, these nodes first deliver packets destined to
n1, n2, n3 or n4. They then need to compare their routing
utilities for the destinations of all remaining packets on them,
which we assume are {na, nb, nc, nd} (a, b, c, d ∈ [5, N ]), to
determine packet forwarders. We use x to represent an element
in {a, b, c, d}, i.e., x ∈ {a, b, c, d} in this section. Note that
the above case if just an example, and FwHider applies to any
group size (>2) and any number of destinations.

A. Baseline Forwarder Anonymity (B-FwHider)

The rationale in B-FwHider comes from our observation
that when there are multiple nodes, we can indirectly relay
packets to their forwarders through a relay node. We also
ensure that the relay node only knows the forwarder informa-
tion in which the destination node ID is encrypted (Table II).
Therefore, the forwarder information not disclosed.

n1

n2

n3

n4

I am the head node, and 
we have packets for ݊௔, 					݊௕, ݊௖, and ݊ௗ

I am the relay node

Neighbor 
set

Fig. 2: Illustration of the FwHider scenario.

1) Design of B-FwHider:
(a) Initial Setup: The group of encountering nodes first

select the relay node, the neighbor set (defined in the next
sentence), and the head node of the neighbor set following a
certain rule (e.g., based on node capability). The neighbor set
includes all nodes except the relay node. Since the relay node
and the head node take certain additional responsibilities, they
are selected from nodes that are more likely to stay in current
place to ensure their availability. We assume n2 is the relay
node and n1 is the head node, as shown in Figure 2. The head
node then decides a group key kn and share it with nodes in
the neighbor set (i.e., n3 and n4). n2 also generates a key k2
for anonymous utility comparison and keep it secretly.

(b) Utility Encryption: Each node in the neighbor set
encrypts the targets of its utilities with key kn and sends all
encrypted utilities to relay node n2.

n1 → n2 : U ′1x : {n1, Ekn
(nx), v1x}

n3 → n2 : U ′3x : {n3, Ekn
(nx), v3x}

n4 → n2 : U ′4x : {n4, Ekn
(nx), v4x}

In this process, since the target of each utility is encrypted, the
utility anonymity is still kept, i.e., n2 cannot deduce another
node’s utility value for any node. After this, n2 has multiple
utilities with the same encrypted target (Ekn(nx)), i.e., one
from each node in the neighbor set. Among utilities with the
same encrypted target, n2 selects the one with the largest
value. We denote all selected utilities as neighbor set utilities.
Basically, the neighbor set utilities include the maximal utility
for each destination in the neighbor set.

(c) Utility Comparison: After this, n1 and n2 can compare
the neighbor set utilities with n2’s utilities to find the maximal
utility for each destination in the whole set of encountered
nodes. We follow the same procedure as in steps (b) and (c)
in B-ReHider (Section IV-A1) to fulfill this task while keeping
the anonymity of routing utilities.

TABLE II: An example of the relay table on n2.

kn-encrypted destination Forwarder
Ekn (na) n1

Ekn (nc) n3

Ekn (nd) n4

(d) Creating Relay Table: After the comparison, n1 does
not decrypt the encrypted destinations (i.e., Ek2

(Ekn
())) that

take nodes in the neighbor set as forwarders but send such
information to n2 directly. n2 then decrypts those destinations
with its key (k2) and get the destinations encrypted by kn



only, which are denoted as kn-encrypted destinations. Finally,
n2 creates a relay table to record the forwarder for each kn-
encrypted destination, as shown in Table II.

(e) Packet Relay: Packets then are anonymously relayed to
their forwarders by the relay node n2. Specifically, each node
in the neighbor set encrypts the destinations of their packets
with kn and sends them to n2. Note that n2 also sends all of its
packets to n1 for encryption as it does not know kn. For each
received packet, n2 searches its kn-encrypted destination in
the relay table. If there is a match, the packet is forwarded to
the corresponding forwarder. Otherwise, n2 keeps the packet
since this means that it is the forwarder for the packet. In
summary, n2 does the following if the forwarding table is as
shown in Table II.

n2 → n1 : packets with destination Ekn
(na)

n2 → n3 : packets with destination Ekn
(nb)

n2 → n4 : packets with destination Ekn
(nc)

n2 : keeps packets with destinations Ekn
(nl), l 6= a, b, c

2) Privacy Protection Analysis: In the following, we
present how B-FwHider anonymizes the forwarder information
and prevents attacks introduced in Section III-B2.

Anonymizing Packet Forwarder: We see that only steps
(c), (d), and (e) of B-FwHider involve the forwarder informa-
tion. In step (c), the forwarder information is encrypted by the
key of n2 (i.e., k2), which is not known by the head node. In
step (d), n2 only knows the forwarder for each kn-encrypted
destination. In step (e), packets are relayed by n2, so neighbor
set nodes cannot know actual forwarders for those packets.
Consequently, after the packet forwarding in B-FwHider, each
node only knows the destinations for which it is the forwarder
and cannot know those of other nodes, thereby anonymizing
the forwarder information.

Eavesdropping: B-FwHider imports an encryption key for
the neighbor set, i.e., kn, which is shared among neighbor set
nodes without any protection. This makes B-FwHider suffer
from the eavesdropping. For example, a malicious node can
learn the key kn through eavesdropping. Then, with key kn, it
can know other nodes’ utilities or the forwarder information
through eavesdropping again in step (b), (c), and (d).

Probing Attack and Brute-force Attack: B-FwHider can
naturally resist the probing attack since the forwarder in-
formation is anonymized. The method used in E-ReHider
(Section IV-B1) can also be used to further enhance B-
FwHider’s resistance to the probing attack.

B-FwHider can also prevent the brute-force attack.This is
because in step (c) of B-FwHider, n1 receives the group
utilities instead of its own utilities from n2. Then, since the
order of the utilities values in the neighbor set utilities is
different with that of n1’s utilities, pairs of cipher-text and
clear-text cannot be collected for the brute-force attack.

3) Summary: B-FwHider can effectively anonymize the
forwarder information. It can resist the probing attack and the
brute-force attack but suffers from the eavesdropping attack.
We propose E-FwHider to handle this problem in Section V-B.

B. Enhanced Forwarder Anonymity (E-FwHider)

E-FwHider is designed to thwart the eavesdropping attack
in B-FwHider. As introduced in the previous subsection, kn
can be eavesdropped by the attacker. Then, it can decrypt the
eavesdropped messages to derive node utilities and forwarder
information.

We solve this problem by securing the communication
among neighbor nodes. Specifically, in E-FwHider, nodes
in the neighbor set adopts the Diffie-Hellman key exchange
protocol [29] to establish a symmetric key, denoted by kg .
The Diffie-Hellman key exchange protocol enables two nodes
to securely distribute a symmetric key even over an insecure
communication channel (e.g., eavesdropped by others). Due to
the page limit, please refer to [29] for details of this protocol.
Then, all messages transmitted among neighbor nodes are
further encrypted with key kg2. Consequently, the group key
kn cannot be obtained by an eavesdropper. Thus, E-FwHider
effectively thwarts the eavesdropping attack. Moreover, E-
FwHider also prevents nodes from obtaining other’s private
information through collusion since each pair of nodes (i.e.,
{ng, n2}) has a unique key kg2.

VI. PERFORMANCE EVALUATION

The proposed strategies’ effects on privacy protection have
been analyzed in Sections IV-A2, IV-B, V-A2, and V-B. We
now evaluate their influences on routing efficiency and energy
consumption through real-trace driven simulation and real
deployment on smartphones.

A. Routing Efficiency

1) Experiment Settings: We used the PROPHET algo-
rithm [2] in the test to represent the utility-based DTN routing
algorithms. We conducted event-driven experiments with two
real traces: Haggle trace [30] and MIT Reality trace [31]. The
former records the encounters of 98 researchers at Infocom
2006 while the latter contains those of 94 students at MIT. We
measured delivery ratio, average delay, the number of utility
forwarding, and the number of packet forwarding in the test.
The first two refer to the ratio of successfully delivered packets
and their average delay. The latter two denote the total number
of utility forwarding and packet forwarding.

We use the XOR operation with a key as the commutative
encryption algorithm and the multiplication with a key as
the hash function. Whenever a node meets another node for
packet routing, it generates a new key randomly. When testing
FwHider, since the traces only provide pairwise encountering
records, we assume that when two nodes meet, they also
meet each other’s neighbors. We use PROPHET-G to denote
PROPHET in the test with such an assumption. We use B-
ReHider, E-ReHider, B-FwHider to denote PROPHET with
corresponding strategies. We did not show the results of E-
ReHider because it is the same as B-ReHider except that it
has additional overhead on the secure key distribution.
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Fig. 3: Performance of each method with the Haggle trace with different number of packets.
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Fig. 4: Performance of each method with the MIT Reality trace with different number of packets.

2) Experiment Results: The test results with the two traces
are shown in Figure 3 and 4. We observe from the two figures
that the routing performance on delivery ratio and average
delay remains the same after adopting privacy protection
strategies, i.e. B-ReHider and E-ReHider have the same rout-
ing performance with PROPHET, and B-FwHider has the same
routing performance with PROPHET-G. This demonstrates
that the proposed strategies can correctly compare utilities and
forward packets. We also see that B-FwHider and PROPHET-
G have slightly higher delivery ratio and lower delay than
PROPHET, B-ReHider, and E-ReHider. This is because in the
tests with B-FwHider and PROPHET-G, we assume encoun-
tering nodes can also meet each other’s neighbors, leading to
more packet forwarding opportunities.

Figure 3(c) and 4(c) show the numbers of utility forwarding
with different strategies. We find that B-ReHider roughly dou-
bles the number of utility forwarding in PROPHET, E-ReHider
doubles the number of utility forwarding in B-ReHider, and
B-FwHider generates the most utility forwarding. We see that
these privacy protection strategies do not significantly increase
the utility exchange, which demonstrates their applicability.

Figure 3(d) and 4(d) demonstrate the numbers of packet for-
warding with different strategies, which follow PROPHET≈B-
ReHider≈E-Re Hider<PROPHET-G<B-FwHider. B-ReHider
and E-ReHider do not change how packets are forwarded, thus
having the same amount of packet forwarding with PROPHET.
In PROPHET-G and B-FwHider, we assume that a node
can also communicate with the newly encountering node’s
neighbors, which leads to much more packet forwarding
opportunities. Packets in B-FwHider are relayed by the relay
node to anonymize the forwarder information, leading to the
most packet forwarding. However, we find that the extra packet
forwarding in B-FwHider is not significantly larger than that
in PROPHET-G. This shows that B-FwHider has acceptable
overhead for additional protection on node privacy.

B. Energy Consumption

We further deployed ReHider and FwHider on Windows
smartphones to evaluate the energy consumption in practice.
We used two HTC Surround smartphones and two LG Quan-
tum smartphones for test, denoted by HTC-1, HTC-2, LG-1,
and LG-2. To simulate the interaction among encountering
nodes in a DTN, each Windows phone repetitively establishes
connections with virtual nodes developed in a desktop through
WiFi connection to compare utilities and forward packets. The
encryption algorithm and hash function were the same as those
in the simulation in Section VI-A.

We assumed that there are 100 destination nodes in the
network. We ran 400 rounds of interaction in each test. In
each interaction, each phone connected to one virtual node in
ReHider and Sf virtual nodes in FwHider. Sf was randomly
selected from [1,9]. In a connection, Np packets for Nd ran-
domly selected destinations were generated. Np and Nd were
randomly selected from [1,40] and [1,30], respectively. We
restored each phone to the factory setting and only installed the
test program. We set the screen brightness to the lowest level.
We charged the phone to full before each test and used the
remaining battery level (i.e., the percent of available battery)
to reflect the energy consumption in the test.

1) ReHider: In this test, we use PROPHET, B-ReHider and
E-ReHider to represent original PROPHET without privacy
protection, PROPHET with B-ReHider, and PROPHET with
E-ReHider, respectively. We also test the Baseline scenario,
in which no program is running on the phone, to reflect the
background energy consumption. We ran each scenario 5 times
and calculated the average remaining battery level on each
phone. The results are shown in Figure 5(a).

We see from the figure that the remaining battery levels fol-
low Baseline>PROPHET>B-ReHider>E-ReHider. Further,
we see that compared to the background energy consumption
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Fig. 5: Remaining battery level after 400 rounds of interactions.

in Baseline, B-ReHider and E-ReHider only incur slightly
higher energy consumption, i.e. around 5% to 10%. Such
a result demonstrates the applicability of B-ReHider and E-
ReHider.

2) FwHider: In this test, we use PROPHET, B-FwHider,
and E-FwHider to represent original PROPHET, PROPHET
with B-FwHider, and PROPHET with E-FwHider, respec-
tively. The Baseline method is the same as in the previous test.
We ran each scenario 5 times to get the average result, which is
shown in Figure 5(b). We see that the remaining battery levels
follow Baseline> PROPHET>B-FwHider>E-FwHider, which
is aligned with that in Figure 5(a) for ReHider. B-FwHider and
E-FwHider only generate slightly higher energy consumption
than PROPHET (5% to 10%).

All above results demonstrate the applicability of B-
FwHider and E-FwHider on current smartphones.

VII. CONCLUSION

In this paper, we propose two strategies, namely ReHider
and FwHider, to protect the private information in routing
utilities and forwarder information in utility-based DTN rout-
ing algorithms. ReHider uses commutative encryption and
order-preserving hashing to anonymize routing utilities be-
tween two encountered nodes. FwHider protects both routing
utilities and forwarder information when a group of nodes
meet by adopting the techniques in ReHider and a novel
set of utility and packet forwarding procedures. We also
propose enhanced versions of the two strategies that can better
thwart malicious attacks. Analytical results, extensive real-
trace driven experiments, and real deployment on smartphones
demonstrate that the proposed strategies can effectively protect
the private information without sacrificing routing efficiency.
In the future, we plan to investigate the protection of private
information under more complicated attacks.
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